Lighting - Challenges ahead in lighting controls sector

Typography
Articles

We are living in interesting times in the lighting industry. Today we are seeing more exciting innovations - in both technology and lighting concepts - than at any time in the last 30 years. And it is interesting to note many of these new products and ideas relate more to comfort, health and wellbeing than just getting more light out of existing light sources. These developments are also presenting new challenges to us in the lighting controls business says John Aston of Philips...

For a long time the inclusion of lighting controls in the design of an office building has been pretty much a must have. The same is by no means true in either the healthcare (hospitals) or education sectors. But some of the new lighting concepts are specifically targeted at these environments and are hence driving the use of new technologies like LEDs – solid state lighting – and even dynamic fluorescent lighting. What is bringing about this change? The most important influence has been the recent realisation that certain wavelengths of light can have more than visual effects. And these have now been demonstrated to be of significant benefit in a number of applications. Over the past 10 years Philips Lighting has worked closely with researchers to try to understand the impact of artificial light on humans in our present intense 24/7 society.
Most of these studies have focussed on the impact of fluorescent lighting in the workplace. The initial commercial result was the launch of Dynamic Lighting in both a ‘personal’ form or in a wider context as a concept we call Dynamic Ambience. This approach to lighting interiors used a colour changing luminaire capable of providing light with a colour temperature anywhere between 2700°K and 6500°K. The thinking behind this related to the fact that natural light changes throughout the day – so why not do the same with artificial light? But this thinking is already developing further, with a much cooler lamp being introduced that has a proven beneficial effect even used on its own; a 17000°K lamp called ActiViva Active.
The very positive results from the initial research projects into both Dynamic Lighting and the ActiViva product have shown real improvements in both workplace performance and people’s perception of their health and well being.
But before we discuss the impact of these fluorescent lighting innovations on controls let us turn to the other big news in lighting – LEDs. This technology is getting a lot of press and it is not necessary to dwell on how it works or where we are up to with efficacy here. Instead it is the impact this technology is having on control systems that is worth examining. Suddenly we have been presented with an instant light source that is available in a variety of colours that can be deployed both internally and externally to give very creative effects – and delivering this is the present challenge. It is good to know virtually all solid state lighting installations are specified with a controls system. In fact it is assumed the controls are, in effect, the delivery system for this technology.
Interestingly many of the initial, and current, lighting controls employed to control LEDs are based on the entertainment industry’s DMX (digital multiplex) protocol. This has been a new learning experience for electrical installers in the construction industry. And, of course, many of these installations have been almost theatrical, particularly in external architectural projects. But LEDs may already be able to offer us rather more than just glitzy effects, and this is where we return to comfort, health and well being and a longer look at healthcare and education applications.
As mentioned above we are now realising that light has both non-visual and biological effects. Currently there are research projects and trials investigating the use of colour changing in both hospitals and schools. The early results (in the latter) showed improved concentration and more accurate working at a nursing station during the difficult night shift. The nurses also reported better sleeping patterns. So if this sort of controlled delivery of light – both in colour and intensity – can help the healthy to work better, what can it do for the patients? Presently we do not know and this area needs investigation. But we do know light can be helpful in some important clinical procedures.
Ask someone to undergo an MRI scan and they are normally confronted with a dramatic, daunting machine set in cold, unappealing, surroundings. A nerve racking situation in itself, quite apart from the patient’s not unnatural concern about the reason for the scan in the first place. Philips has put together its lighting and medical divisions to address this issue by creating a package that provides both the scanner and a complete, controlled, lighting installation that allows the patients to choose the colour and intensity of the room lighting. Early experience of these solutions is showing calmer patients, and a quicker throughput, giving real improvements in operational efficiency. You could even argue that the patients’ carbon footprint is being reduced.
These MRI room packages rely on LED technology to offer a full palette of colours for the patients – as well as the clinical staff, who can even use the lights to signal to the patient! The lighting can even be integrated into a broader audio visual experience that involves projected images – truly an Ambient Experience. Philips calls this Ambiscene.
Of course lighting controls have been used already in both hospitals and schools but the reasons have primarily been related to cost of ownership and particularly energy consumption. We know lighting can be turned off or down when there is adequate daylight or when there is no-one there; we’ve seen the evidence of 30% to 50% savings in these circumstances. Clearly any health trust or school authority will be considering any measure capable of reducing reliably reducing their carbon emissions. Another good reason to adopt a networked lighting management system is its ability to monitor aspects of the installation and meet obligations like the testing and logging of the emergency lighting. Philips has successfully combined all these ‘cost of ownership’ functions in its LightMaster Modular System; a networked solution that readily involves all users by readily allowing the use of local controls.
The next generation of Philips lighting controls will address all the usual functions and add the abilities now being identified in colour changing and effect lighting. The present independent solutions will develop or evolve into extensions of the overall lighting management system adopting the same interactive (user oriented) approach already provided for many office workers. Indeed it is this knowledge of the importance of the affected users being able to interact with the lighting that is a key factor in any product definitions. But how do you involve all the users when the application is, say, a hospital? Well most hospital beds already provide the patient with some control of their local lighting – at least the reading light. However, when the doctors do their rounds they need, perhaps, a different level, or even quality, of lighting to carry out their examination. This facility is already a practical solution.
In conclusion, then, new lighting is today challenging us to keep up, and to deliver it in the right quantity, quality and colour while minimising the cost of ownership and carbon emissions. Lighting consumes nearly 20% of global electricity generation, so we cannot ignore its cost; but we must also recognise that we are now providing much more than just enough light to work by. Lighting is now being employed to offer a better learning environment as well as measured improvements in productivity in the workplace. More importantly we are beginning to understand that where we cannot use daylight we may be able to effectively help patients in their treatment and their speed of recovery. But without effective, easily understood, lighting controls we will struggle to deliver all these benefits. And at last we can say that lighting controls not only put the right light, in the right place, at the right time but also in the right colour.